

SIGNAL
tm

Application Notes

Version 4.04 / 5.04
March, 2008

Engineering Design

This document is provided for the sole purpose of operating the SIGNAL system. No part of
this document may be reproduced, transmitted, or stored by any means, electronic or mechanical.
It is prohibited to alter, modify, or adapt the software or documentation, including, but not limited
to, translating, decompiling, disassembling, or creating derivative works. This document contains
proprietary information which is protected by copyright. All rights are reserved.

ENGINEERING DESIGN MAKES NO WARRANTY OF ANY KIND WITH REGARD TO
THE MATERIAL CONTAINED HEREIN, INCLUDING, BUT NOT LIMITED TO, IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Engineering Design shall not under any conditions be liable for errors contained herein or for
incidental or consequential damages arising from the furnishing, performance, or use of this
material.

The information in this document is subject to change without notice.

© 1996-2008 Engineering Design, Berkeley, CA. All rights reserved.
Printed in the United States of America.

SIGNAL, Real-Time Spectrogram, RTS, Event Detector, Event Analyzer,
Experiment Maker, CBDisk, DartDisk, DTDisk, NIDisk, WaveDisk are trademarks
of Engineering Design.

The following are service marks, trademarks, and/or registered trademarks of the respective
companies:

Communication Automation: Dart
Creative Technology: Audigy, Extigy
Data Translation: Open Layers
Hewlett-Packard: HP, LaserJet, and DeskJet
Measurement Computing Corp: Computer Boards
Microsoft: Windows, Windows 95, Windows 98, Windows 2000, Windows XP
National Instruments: NI-DAQ

Engineering Design
262 Grizzly Peak Blvd
Berkeley, CA 94708 USA
Tel/fax 510-524-4476
Email info@engdes.com
www.engdes.com

Table of Contents

5. SIGNAL Sound File Format

6. Base Address, IRQ, and DMA Channel Usage

8. Analog I/O Board Diagnostics

10. Digital Transfer between SIGNAL and DAT Recorders

11. Exchanging Data Files between SIGNAL and MATLAB

Application Note 5

SIGNAL Sound File Format

Applies to: SIGNAL & RTS

Introduction

This note describes the SIGNAL binary sound file format and related concepts. See the
SIGNAL and RTS user guides for background on importing and exporting sound and
measurement data. Note also that SIGNAL can export and import sound data in Wave and
AIFF file formats, which may avoid any involvement with the SIGNAL file header.
Throughout this note, "SIGNAL" refers to the SIGNAL and RTS programs interchangeably,
and "RTS" refers to both RTS and RTSD, unless otherwise noted.

Overview of SIGNAL File Types

Most commercial programs, including SIGNAL, write data in both binary- and text-file
format. Text files are typically used to store measured parameters, sound similarity values,
and other extracted parameters, as well as general text information. They are created and
read by the Write ASCII (WA) and Read ASCII (RA) command families in SIGNAL and the
log-file storage command (L) in the RTS. Text files are virtually computer-independent, and
they are the common denominator of file exchange among commercial statistics, spreadsheet,
database, and graphics programs. They can be transferred easily between PC and Macintosh
environments. And they can be easily viewed by the user, via TYPE or PRINT commands in
DOS, or altered using a text editor such as DOS EDIT.

Binary files are normally used for storing and exchanging sampled sound signals. They are
created and read with the Write (W) and Read (R) commands in both SIGNAL and the RTS.
They are much more space-efficient than text files. Binary files are typically written in one
of two forms - with a proprietary file header containing information such as size, sample rate,

SIGNAL/RTS APPLICATION NOTES

2 Application Note 5

and binary coding, or headerless, i.e., with no header at all. SIGNAL can read and write
binary sound files in headerless format or with SIGNAL, Wave, and AIFF headers. The RTS
can read sound files with SIGNAL, Wave, or BLB headers, and can write sound files either
headerless or with SIGNAL headers. Header-based files may require programming to
enable exchange between systems, while headerless files are a default format for exchanging
sampled sound data. However, file information such as sample rate and binary coding must
be provided to the file-reader in order to interpret the headerless data. The SIGNAL header
structure is the subject of this note.

Sound File Structure

SIGNAL sound files consist of two parts, a header section and a data section. The header
section contains information about the file and its contents: file size, data representation
(integer vs. real), buffer type (T, F, FT), sample rate, etc. The header mixes ASCII and
floating point (real) data, and can be extended by the user to add demographic information or
notes about the data. The data section contains the sampled waveform, power spectrum, or
spectrogram, and is written in binary format, without record marks or other dividers. Data
may be represented in either integer or floating-point (real) format. RTS sound files are
identical, except that they only contain integer, time data.

Terminology

The following terms are used in this note:

• 1 File Block = 512 bytes in length

 and can contain: 128 4-byte (32-bit) real numbers
 256 2-byte (16-bit) integers
 512 1-byte ASCII characters

• 1 Header Element = 4 bytes

 and can contain: 1 real number
 4 ASCII characters

• Abbreviations:
 elt = element
 < > = blank
 N = numerical header element = 4-byte real number
 I = numerical header element = 4-byte integer number
 L = literal header element = 4 ASCII characters

SIGNAL Sound File Format

Application Note 5 3

Header Section

The header is a mixture of 4-byte numerical (N) and literal (L) elements. Numerical
elements contain one real number in 32-bit floating-point format, and literal elements contain
4 or fewer ASCII characters. Fewer than 4 ASCII characters are left justified with trailing
spaces. Elements marked with an asterisk (*) are mandatory in the header. Optional (non-*)
elements are filled with spaces (decimal 32) if type L, or zeroes if type N. Reserved elements
are filled with zeroes.

The header specifies the lengths of the header and data sections in blocks (NHBLKS and
NDBLKS), where 1 block = 512 bytes. The header section must contain an integral number
of blocks. Through version 2.2, the SIGNAL data section contains an integral number of
blocks, by padding the last block with zeroes. In SIGNAL versions 3.0 and later, and in the
RTS, the final data block is not padded.

The default header is two blocks long, but the user may extend the header with additional
blocks of information (such as demographic data or notes) by adjusting NHBLKS
accordingly. SIGNAL will read the first two header blocks, skip (NHBLKS-2) blocks, then
read NDBLKS blocks of data.

The first section in the header contains file attributes. See the detailed outline below.
PGM_STAMP specifies which program created the file, and PGM_VERSION specifies the
program (and file) version. NHBLKS and NDBLKS specify the number of header and data
blocks in the file (see above). BUFFER_TYPE specifies the buffer type (T, F, or FT) and
DATA_TYPE specifies the type of the data (integer or real).

For integer time files, CNVFAC and OFFSET specify the conversion factor and offset of
the data, used to convert the integer data values to voltages. CNVFAC and OFFSET depend
on the A/D converter. CNVFAC expresses Volts/bit, equal to the converter's input in Volts
divided by its output in bits, for example, 10 Volts / 2048 = .00488 Volts/bit. OFFSET is the
offset of the data from binary 0. For example, 12-bit data may be coded between either
-2048 and +2047 or 0 and 4095. OFFSET expresses the midpoint of the coding range, e.g.,
2048 for 0 to 4095 data. These factors are applied when the data is read into a SIGNAL
buffer:

 Buffer value (Volts) = (File value - OFFSET) * CNVFAC

Beginning with SIGNAL 4.02, SIGNAL sound files may contain multi-channel data. Data
channels are interleaved – point 1 of channel 1, point 1 of channel 2, …, point 1 of channel
N, point 2 of channel 1, etc. NCHAN specifies the number of data channels in the file.

The next section in the header contains buffer attributes. Again, see the detailed outline
below. SIGNAL reads these directly into the Buffer Directory, so that the BD is completely
recovered when a file is read in. For a complete description of these attributes, see the
SIGNAL User Guide. Mandatory header elements for all buffer types (T, F, and FT) are
TPNTS, the number of data points per channel (not the total number of data points in the
file), SRATE, the sample rate of the data in points/sec, and XLOW and XRANGE, the time
origin and time range of the data in msec. FT buffers also require NTIME and NFREQ, the

SIGNAL/RTS APPLICATION NOTES

4 Application Note 5

number of time and frequency cells in the matrix, XFTLEN, the FFT length of the
spectrogram, and YLOW and YRANGE, the frequency origin and frequency range of the
data.

Data Section

The data section is written as continuous numerical data, with no intervening record or
block marks, in either 16-bit integer or 32-bit floating point format (depending on
DATA_TYPE in the header). Floating-point numbers are represented in IEEE 754 format.
See Application Note 11, "Exchanging Data Files between SIGNAL and MATLAB", for a
detailed discussion of floating-point representation.

Header Format

Following is the format of the two header blocks in the SIGNAL sound file. Again, note that
elements marked with an asterisk (*) are mandatory. Unused elements are filled with spaces
(hex 20) if literal (type L), or zeroes if numerical (type N). Literal elements are padded with
trailing blanks. Reserved elements are filled with zeroes.

File Header Block #1

File Attributes

 Elt No. Type Title Contents

 1 * L PGM_STAMP SIG (SIGNAL)
 RTS (RTS or RTSD)
 EXT (External)
 2 L PGM_VERSION x.xx (Version)
 3 * N NHBLKS No. header blocks
 4 * N NDBLKS No. data blocks
 5 * L BUFFER_TYPE T = Time
 F = Frequency
 FT = Frequency-Time
 6 * L DATA_TYPE I = Integer
 R = Real
 7 * N CONV_FACTOR [Integer time file only]
 8 * N OFFSET [Integer time file only]
 9 * N NCHAN [Time file only]
 10-20 N Reserved

SIGNAL Sound File Format

Application Note 5 5

Buffer Attributes

All Buffer Types

 21 * N TPNTS No. data points (per channel)
 22 * N SRATE Sample rate (pts/sec)
 23 * N XLOW X-origin (msec)
 24 * N XRANGE X-range (msec)
 25-26 L QTY Physical quantity (e.g. AMPL)
 27-28 L UNITS Physical units (e.g. VOLTS)
 29 L SCALE < > = linear
 DB = log
 30-34 L TITLE Buffer title
 35 L MODE < > = Not complex
 R = Real part, complex
 I = Imag part, complex
 M = Magnitude, complex
 P = Phase, complex
 N = Normalized mag, complex
 36 L WINDOW RECT = Rectangular
 HANN = Hanning
 HAMM = Hamming
 [F & FT only]
 37 N SMOOTHING Smoothing width (msec,Hz)
 38-39 L { DATE [3.0 and earlier] mm-dd-yy
 { Reserved [3.1 and later]
 40 L XFSCALE Transform energy scaling:
 PS = power spectrum
 PSL = PS w/ length scaling
 PSD = power spectral density
 PSDL = PSD w/ length scaling
 ES = energy spectrum
 ESD = energy spectral density
 41-43 L DATE2000 mm-dd-yyyy
 44 I TPNTS No. data points (4-byte integer)

 45 N Reserved

Temporary

 [Defined in buffer directory, but not written into file header]

 46 N SBUF Transform source buf no.

 47-50 N Reserved

SIGNAL/RTS APPLICATION NOTES

6 Application Note 5

Buffer-Type Specific

Time & Frequency Buffers

 51 N ADBITS A/D resolution [Integer time file only]
 52-65 N Reserved

Frequency-Time Buffers

 51 * N NTIME No. time cells
 52 * N NFREQ No. frequency cells
 53 * N XFTLEN FFT length
 54 * N YLOW Y-origin (Hz)
 55 * N YRANGE Y-range (Hz)

 56-65 N Reserved

Buffer Caption

 66-85 L CAPTION 80 characters

User-Defined Numerical Fields

 86 N BVAL1 1 real number

 105 N BVAL20 1 real number

Reserved for System

 106-128 N Reserved

SIGNAL Sound File Format

Application Note 5 7

 File Header Block #2

User-Defined Label Fields

 1-4 L BLAB1 16 characters

 37-40 L BLAB10 16 characters

User-Defined Axis Labels

 41-55 L XLAB X-axis label (60 characters)
 56-70 L YLAB Y-axis label (60 characters)

Reserved for System

 71-128 N Reserved

Format Differences between SIGNAL and RTS

SIGNAL and RTS sound files follow the same format, and can generally be interchanged
freely. Note that the RTS reads and writes only time files, while SIGNAL writes time,
spectrum, and spectrogram files. SIGNAL and RTS sound files differ in the following
respects.

 1. RTS sound files are written in integer format, while SIGNAL sound files may be
stored in integer or real format. Thus SIGNAL will accept all RTS files, but to
export from SIGNAL to the RTS, SIGNAL must store the file in integer format
(using the INTWRT switch or W /I).

 2. SIGNAL and the RTS write different file ID's in the PGM_STAMP and
PGM_VERSION elements, which can be used to identify file origin. SIGNAL 3.1
writes "SIGP3.10" and RTSD 1.1 writes "RTS 2.20". SIGNAL 4.0 and RTS 4.0
write "SIGP4.0x" and "RTS 4.0x", where "x" is the minor version number.

SIGNAL/RTS APPLICATION NOTES

8 Application Note 5

Exchanging Sound Files with External Systems

Binary sound files can be exchanged between SIGNAL and other data acquisition systems.
This requires that the sound files be in a format compatible with both systems. Approaches
include: (1) write SIGNAL files in headerless binary format, (2) write SIGNAL files in Wave
or AIFF format, (3) convert files from the SIGNAL format to the other system's format using
a file converter, and (4) convert the other system's files to the SIGNAL format using a file
converter. See the file import/export sections of the SIGNAL and RTS user guides for more
detail. SIGNAL can read and write headerless binary files, and the RTS can write but not
read headerless binary files. When writing a program to convert an external data file to the
SIGNAL file format, keep the following points in mind.

 1. Place the label "EXT" in PGM_STAMP and leave PGM_VERSION blank.

 2. Determine CNVFAC and OFFSET for the external data, either empirically, or based
on the known resolution and range of the external A/D converter.

 3. Block and record marks may not appear anywhere in the file.

Programming Access to SIGNAL Files

The data section in the SIGNAL sound file is written as continuous numerical data, with no
intervening record or block marks. Data can be read and written using any of the following
software tools.

Software Environment Routines/Settings
FORTRAN direct I/O ACCESS=DIRECT, FORM=UNFORMATTED

C low-level I/O open(), read(), write()

DOS file services Open file, read file, write file =
 DOS int 21h, functions 3ch, 3dh, 3eh, 3fh, 40h, and 42h

4-30-92
Rev 9-25-95
Rev 5-9-99
Rev 5-25-02
Rev 1-15-04
Rev 3-31-08 Caption extended from 72 to 80 characters

Application Note 6

Base Address, IRQ, and DMA Channel Usage

Applies to: SIGNAL & RTS

NOTE: This note applies only to DT-2821 and DART PCMCIA

analog I/O boards.

Overview

Add-in hardware boards, such as analog I/O, DSP, SCSI controller, etc. are internally set to
utilize a particular base address, interrupt level (IRQ), DMA channel, and/or ROM address.
Base address sets the address through which the computer communicates with control
registers on the board. Typical base addresses lie between 200 and 3f0 hex, and most boards
occupy several addresses following the base, e.g., 240-24f hex (see the following table).
Interrupt level (IRQ) indicates which interrupt channel will be used by the board to request
interrupt service from the computer. IRQ channels are numbered 1 - 15 (decimal). DMA
channel indicates which DMA (Direct Memory Access) channel will be used by the board to
request DMA service. DMA channels are numbered 0 - 3 and 5 - 7. ROM address applies
only to bootable controller boards, and indicates where the board's BIOS code is installed in
the computer's memory. ROM addresses typically run in range c0000 - dffff (hex).

Hardware conflicts can arise when two different boards are set to the same base address,
IRQ, DMA channel, or ROM address. These conflicts can cause the system to malfunction
or even not boot. Boards should never share a base address, IRQ, DMA channel, or
ROM address setting. Note that since a base address is really an address range (see the
table), no part of that range may overlap another board's. Conflicts are resolved by
determining the address/IRQ/DMA assignments of all boards in the system and altering these
assignments to eliminate the overlap. This may involve changing both the board, through
jumpers or software, and its controlling software, such as SIGNAL.CFG for the SIGNAL
analog I/O board.

SIGNAL/RTS APPLICATION NOTES

2 Application Note 6

Base Address, IRQ, and DMA Assignments

The following table shows the base address, IRQ, and DMA assignments for the SIGNAL
analog I/O and DSP boards and other common system components. If an IRQ or DMA entry
is omitted in the table, then that board does not have IRQ or DMA hardware. Note that
commercial programs for detecting address, IRQ, and DMA assignments are not reliable. The
best way to resolve a conflict is to manually construct a similar table for your system,
including all the system components. Note that post-1995 hard disk/CD-ROM drives may
conflict with DT-2821 analog I/O boards.

 Base Address
Device Range IRQ DMA Channel
Analog I/O:
 DT-2821 family 240 - 24f 15 5, 6
 DART PCMCIA card 260 - 26f 10

Arithmetic accelerator (for RTSD) 300 - 30f

Sound chip on notebooks 5

SCSI controller 340 - 35f 11

CD-ROM, pre-1995 11 5
Hard disk / CD-ROM, post-1995 15

System IRQ Assignments:
Timer 0
Keyboard 1
IRQ Cascade 2
COM2 (FAX/modem) 2f8 - 2ff 3
COM1 3f8 - 3ff 4
LPT2 (optional) 5
 LPT1 378 - 37b 7
Floppy Disk 6
Clock 8
IRQ2 Redirect 9
PCI bus interface 11
Math Coprocessor 13
Hard Disk, CD-ROM 14, 15

5-9-94
Rev 9-25-95
Rev 4-18-99

Application Note 8

Analog I/O Board Diagnostics

Applies to: SIGNAL & RTS

NOTE: This note applies to DT-2821 analog I/O boards.

Introduction

If your DT-2821 analog I/O board appears to be malfunctioning, first check your signal
source and all cables and instruments leading to or from the I/O board, including the
SIGNAL I/O cable and panel. Remove any non-essential components and if possible
exchange the others one by one. If you still suspect the board itself, then run the Data
Translation diagnostics on the board. Following are instructions:

 1. The DT diagnostics program "DT2821.EXE" is included in the C:\SIGNAL
directory. To execute it, leave SIGNAL, attach to this directory, and type "DT2821"
at the DOS prompt.

 2. Select your board model from the menu: DT-21EZ (50 KHz), DT-2821 (50 KHz),
DT-2821F (150 KHz), or DT-2821G (250 KHz). When asked if the board is factory
configured, say YES unless you've rejumpered the board for a different base address
or IRQ.

 3. Run the following tests from the main menu and submenus. These tests require no
external connections. Tests not listed below require that external signals be provided
to the board. Within the submenus, it may be necessary to hit <arrow> keys and
<enter> twice. After reporting test results (e.g., "Board Response PASSED") the
program will pause before returning to the submenu - don't hit <enter>, just wait.
Note: the DIO section of the Acceptance Test and the DIO test will fail - this is

SIGNAL/RTS APPLICATION NOTES

2 Application Note 8

normal, because the test requires special cabling. All other tests should pass. DIO is
not involved in SIGNAL analog I/O operation.

Main Menu Test Submenu Test
Acceptance Test
Register Tests Board Response
 ADCSR
 CHANCSR
 DA/DIOSR
 TMRCTR
 SUPCSR
Interrupt Tests A/D Done Bit
 A/D Error Bit
 D/A Ready Bit
 D/A Error Bit
D/A Function Tests DAC Ready Bit
 DAC Error Bit
A/D Function Tests A/D Done Bit
 A/D Error Bit

If the diagnostics report a failure, US users should contact Data Translation for board repair
(508-481-3700), and foreign users should contact their SIGNAL supplier - either Engineering
Design or Noldus Information Technology. Foreign users should not contact Data
Translation, who is not responsible for the board. If the board passes the DT diagnostics
but errors persist, contact Engineering Design.

9-13-95

Application Note 10

Digital Transfer between SIGNAL and DAT
Recorders

Applies to: SIGNAL & RTS

NOTE: This note has not been revised for SIGNAL 4.0.

Introduction

DAT (Digital Audio Tape) recorders store audio signals in digitized format, as a sequence of
sampled data points, exactly like a SIGNAL or RTS time buffer. With additional hardware
and software, this digitized sound data can transferred directly from the DAT recorder onto
the user's hard disk without redigitizing. The resulting hard disk files can then be read into
SIGNAL or the RTS for examination and analysis.

The principal advantage of direct digital transfer is sound accuracy. It avoids the potential
degradation involved in converting the digital recording back to analog and then redigitizing
in SIGNAL. Most important, it retains the 16-bit digitization of the DAT rather than the 12-
bit coding of the standard SIGNAL analog I/O board. However, there are also several
disadvantages. One is the extra cost of interface hardware and software. Another is that the
signal's sample rate is fixed by the DAT recorder, which can waste buffer space, file size, and
computation time. And while performing a direct digital transfer appears simpler than
redigitizing, in fact, the multiple steps of starting Windows, performing the transfer, and
possibly altering or decimating the sample rate can take more time than simply redigitizing
the source material in SIGNAL from a DAT analog playback.

This note describes the hardware and software required to transfer digital sound material
between a DAT recorder and SIGNAL, the steps involved in performing the transfer, and the

SIGNAL/RTS APPLICATION NOTES

2 Application Note 10

performance of representative analog and DAT recorders and transfer components.
Throughout this note, "RTS" refers to both the RTS and RTSD software programs.

Required Hardware and Software

Digital sound data is commonly transferred into and out of a DAT recorder via one of several
interface standards. AES/EBU is the standard for professional audio, and normally uses 3-
pin XLR connectors. IEC 958 is also known as S/PDIF (SONY/Philips Digital Interchange
Format), and is the consumer standard. S/PDIF normally uses an electrical connection
involving RCA phono connectors, but may also use an optical connection.

Digital transfer between a DAT recorder and computer involves connecting the recorder to
the computer through a S/PDIF interface board, and requires the following components:

 • DAT recorder with a S/PDIF interface
 • S/PDIF digital interface PC-board
 • Software for handling the digital transfer
 • [optional] Sound card for listening to the transferred sound files
 • [optional] Software for altering sound file sample rate

DAT Recorders

Many DAT recorders include a S/PDIF interface. Examples include professional machines
such as the Panasonic SV-3800 and SONY PCM-R500, and portables such as the SONY
TCD-D10. The S/PDIF interface is sometimes referred to as "COAXIAL" in DAT recorder
product descriptions.

S/PDIF Interface Boards

The S/PDIF digital interface board (referred to here as the DIO board) converts digital data
between a serial bit stream in the S/PDIF format and a sequence of digital words on the
computer bus. One S/PDIF board that is widely used is the "Card-D/Digital only", model
DO-01, manufactured by Digital Audio Labs, Plymouth, MN (612-559-9098,
www.digitalaudio.com). The Card-D is an ISA board, and costs about $350. It can handle
either of the two standard DAT sample rates, 44.1 KHz or 48 KHz. Note: Apparently when
used with one of the more recent OEM versions of Windows 95/98 (the "OSR2" release), the
Card-D requires an older driver (V1.30) than the one shipped with the board (either V1.31 or
V1.40), which is available from the manufacturer's website.

Digital Transfer between SIGNAL and DAT Recorders

Application Note 10 3

Transfer Software

Transfer software controls data flow between the DIO board and computer memory. The
digital transfer is performed under Windows, and the DIO board manufacturer normally
includes a driver which makes the DIO board look like a conventional Windows sound card.
Sound data is then transferred from the computer to the DAT by "playing" the sound file
through the DIO board to the DAT, and sound data is transferred from the DAT to the
computer by "recording" a sound file from the DAT through the DIO board. "Playing" and
"recording" through the DIO board can be handled by the Windows Sound Recorder
program, which is included with Windows. However, this program limits maximum sound
duration per physical memory, and any other program that supports record and play functions
through the Windows Sound System (such as Sound Forge, described below) should also
work. These programs normally operate on Wave files, the Windows standard. See below
for operating details.

Sound Card

A sound card can be useful to listen to the sound files received from the DAT, or check them
before transfer to the DAT. One card that is widely used is the Daytona PCI sound card
from Turtle Beach, Yonkers, NY (800-233-9377, www.tbeach.com). This is a PCI board,
which is useful on newer computers with few ISA slots, and retails for about $125. If
installing this card on a computer containing the SIGNAL analog I/O board, beware of
potential hardware conflicts. See Application Note 6, "Base Address, IRQ, and DMA
Channel Usage", for assistance. Windows can be set to play to either the sound card or DIO
board via the Windows multimedia control panel.

Sample Rate Converter

Files transferred from a DAT recorder will be received in the native sample rate of the
recorder, normally 44.1 KHz or 48 KHz. SIGNAL I/O boards provide sample rates resulting
from integer division of 4,000,000 (e.g., 43956 = 4,000,000 / 91). Therefore the SIGNAL
board cannot play DAT signals at their exact native sample rates. Note that this has no affect
on the accuracy of SIGNAL's analysis capabilities. The following table gives the nearest
available sample rate and the resulting percent error:

Native DAT Nearest SIGNAL Percent
sample rate sample rate error

44100 KHz 43956 -.33 %
48000 KHz 48193 +.40 %

If the percent error is significant for your application, SIGNAL 4.0 can mathematically
convert a digital signal from one sample rate to another. The process is based on
mathematical function approximation and interpolation, and can be quite accurate.
Inaccuracies introduce distortion in the resampled waveform, and resampling accuracy can be

SIGNAL/RTS APPLICATION NOTES

4 Application Note 10

measured by the increase in total harmonic distortion (THD) between the original and
resampled signals.

Operating Instructions

Transferring from DAT to SIGNAL

Following is a connection diagram for transferring sound material from the DAT recorder to
SIGNAL. Sample rates are shown in ()'s.

DAT
S/PDIF
output

DIO
board Transfer

software
.WAV file
(44.1 or 48 KHz)

SIGNAL
(analysis,

Sample
rate

converter

.WAV file
(50 KHz)

SIGNAL
(analysis &

playback)

playback*)input

* = Playback at nearest available sample rate

Running under Windows, the digital data flows from the S/PDIF output on the DAT recorder
to the DIO board under control of transfer software such as Windows Sound Recorder or
equivalent, into a Wave file on the computer disk. Following are suggested operating steps:

1. Connect the S/PDIF output on the DAT recorder to the DIO board input.

2. Start Windows and launch Sound Recorder. Make sure that Sound Recorder can find the
DIO board and if necessary, set the Windows multimedia control panel to record from the
DIO board.

3. Start recording in Sound Recorder, then start playback from the DAT. Stop both after the
sound completes.

4. Save the recorded sound from Sound Recorder as a Wave file on disk.

5. Read the resulting Wave file into SIGNAL (using "R /W") or into the RTS (which will
detect the file type automatically) for viewing, analysis, or measurement.

Digital Transfer between SIGNAL and DAT Recorders

Application Note 10 5

Using the DAT File in SIGNAL

The Wave file received from the DAT is limited in length only by the recording program and
the available disk space. However, SIGNAL time buffers are limited to about 1.2 million
data points, or about 27 seconds at 44.1 KHz sample rate. Longer files can be read into
SIGNAL in segments using R /W /Q.

The Wave file will have the native sample rate of the DAT recorder, either 44.1 KHz or 48
KHz. Files at these sample rates can be viewed, measured, manipulated, modeled, edited, etc
with full accuracy in SIGNAL, but playbacks will be performed at the nearest sample rate
available on the SIGNAL I/O board, as indicated by the * in the connection diagram and
discussed earlier. If this sample rate error is unacceptable, for example when making
playback tapes, the Wave file can be resampled to an available sample rate such as 50 KHz
using an external software sample rate converter. Both cases are shown in the connection
diagram. See "Sample Rate Converter" for details.

Note that the sample rate of direct-from-DAT sound files may considerably exceed the
bandwidth requirements of the recorded material. This can waste SIGNAL buffer space, disk
space for storage, and computation time during analysis. In this case, sample rate can be
decimated (reduced) by an integer multiple without loss of information, provided the signal is
digitally filtered first. See "Time and Frequency Decimation" in Chapter 28, "Signal
Processing", in the SIGNAL User Guide for details. Alternately, the DAT tape can be
played into SIGNAL and redigitized at an appropriate lower sample rate.

Using the DAT File in the RTS

The RTS can handle files up to 1 billion data points in length. It will detect the Wave file
type automatically and read it the same as a SIGNAL file.

As in SIGNAL, Wave files in the native sample rate of the DAT can be viewed and measured
in the RTS with full accuracy, but playbacks will be performed at the nearest available
sample rate, as indicated by the * in the connection diagram. This should suffice for most
purposes in the RTS. If exact playbacks are required, the Wave file can be resampled to a
sample rate such as 50 KHz, as described in "Sample Rate Converter". Note that the RTS
cannot write Wave files.

SIGNAL/RTS APPLICATION NOTES

6 Application Note 10

Transferring from SIGNAL to DAT

Following is a connection diagram for transferring sound material from SIGNAL to the DAT
recorder. Sample rates are shown in ()'s.

SIGNAL buffer
(50 KHz)

DIO
boardTransfer

software

.WAV file
(44.1 KHz)

Sample
rate

converter

.WAV file
(50 KHz)

DAT:
S/PDIF
input

SIGNAL buffer
(44.1 KHz)

output

The sounds of interest are stored from SIGNAL buffers as Wave files. Then, running under
Windows, digital data flows from the Wave file on the computer disk to the DIO board,
under control of transfer software such as Windows Sound Recorder or equivalent, to the
S/PDIF input on the DAT recorder. Note that the RTS cannot currently write Wave files;
however a file converter could be written to convert SIGNAL files from the RTS into Wave
files.

Following are suggested operating steps:

1. Create a SIGNAL buffer containing the signal of interest and write it to a Wave file on
disk using "W /W" in SIGNAL.

2. Start Windows and launch Sound Recorder. Make sure that Sound Recorder can find the
DIO board and if necessary, set the Windows multimedia control panel to play through the
DIO board. Queue up the desired Wave file for playback.

3. Connect the DIO board output to the S/PDIF input on the DAT recorder.

4. Start recording on the DAT, then start playback in Sound Recorder. Stop the DAT
recorder after the sound completes.

The SIGNAL source buffer must either be created in the native sample rate of the DAT
recorder (44.1 or 48 KHz), or else written to disk and then converted to this sample rate (see
"Sample Rate Converter" above). Note again that SIGNAL buffer capacity is limited to
about 1.2 million data points, or about 27 seconds at 44.1 KHz sample rate.

Digital Transfer between SIGNAL and DAT Recorders

Application Note 10 7

Performance Specifications

DAT Recorders

One of the attractions of DAT recorders is their superior performance relative to analog
recorders. For interest, following are performance specifications for a few DAT recorders
and a studio-quality Studer analog recorder. THD = total harmonic distortion. Values are
from manufacturer's specifications except where noted as measured by "(meas)".

 SONY SONY Panasonic Studer
 TCD-D10 PCM-R500 SV-3800 A810 @ 15 ips

Record mode Digital Digital Digital Analog
Recorder type Portable Studio Studio Studio
Freq response 20-22 KHz, 20-20 KHz, 10-20 KHz, 30-18 KHz,
 ±1 db ±0.5 db ±0.5 db ± 1 db
Signal-to-noise > 85 db > 90 db > 92 db 64 db (meas)
THD -64 db (spec) -66 db -70 db at +4 dBu -57 db (meas)
 -81 db (meas) -83 db at +22 dBu

The SONY TCD-D10 portable DAT recorder (cost about $800-1000) has become popular for
field use, and its performance was characterized. Maximum input voltage = ±3.15 Volts,
beyond which input signals are clipped. Measured THD is better than -81 db.

S/PDIF Board

The Card-D S/PDIF board was tested at the Borror Laboratory of Bioacoustics (BLB) at The
Ohio State University. A Wave file containing a sine signal was created in SIGNAL,
transferred digitally to the DAT, then transferred digitally back from the DAT to SIGNAL
and analyzed for distortion. As expected, there was no detectable degradation in the returned
signal.

8-30-98

Application Note 11

Exchanging Data Files between SIGNAL and
MATLAB

Applies to: SIGNAL & RTS

Introduction

The MATLABtm program from The MathWorks (Natick, MA) is a programmable
mathematical analysis and display language which provides a broad range of capabilities for
mathematical modeling and signal analysis in a language environment similar to SIGNAL's.
For the user willing to program, MATALB can add powerful capabilities to the SIGNAL
environment – for example, extensive matrix operations (the "mat" in MATLAB), as well as
application "toolboxes" covering neural networks, human speech, digital filters, a variety of
spectral transforms, and other advanced signal analysis. SIGNAL users have employed
MATLAB to perform linear predictive speech analysis, design and apply custom digital
filtering, perform wavelet analyses of time signals, and perform matrix-based analysis of
scanned physiology images.

SIGNAL users can access MATLAB’s capabilities by exporting SIGNAL data files to
MATLAB, performing desired analyses and signal transformations (such as filtering), then if
necessary exporting the data back to SIGNAL. This is achievable because both programs
provide basic and compatible facilities for importing and exporting data files. This
application note describes how to exchange data between the two systems. The first part
describes SIGNAL and MATLAB commands for data import and export, and the second
provides background on data storage issues that affect this process.

SIGNAL/RTS APPLICATION NOTES

2 Application Note 11

Transferring Data between SIGNAL and MATLAB

Following is a discussion of the SIGNAL and MATLAB commands used to exchange data
files between the two programs. Note that SIGNAL files can be stored in two data formats -
integer or floating point - and two header formats - SIGNAL file header or headerless. See
the chapter "File Storage and Exchange" in the SIGNAL User Guide for background. The
basic strategies for file exchange are: 1) export data from SIGNAL in SIGNAL-header files
and let MATLAB skip over the SIGNAL header and 2) export data from MATLAB in
headerless files, supplying the essential file parameters when importing into SIGNAL.

Exporting integer SIGNAL time files to MATLAB

SIGNAL time buffers which have not been manipulated after acquisition can be transferred
without loss of precision by using integer format, which stores the exact values delivered by
the A/D converter.

SIGNAL-header integer files

SIGNAL-header integer files are read in MATLAB by skipping the header and applying a
data conversion factor.

1. Write the SIGNAL time buffer to a SIGNAL-header integer time file using the /I flag:

 >W T 1 /I
 Filename: IFILE

2. Read the file into a MATLAB array. The following MATLAB commands will read the
entire integer file IFILE into the array A. FSEEK skips the 1024-byte SIGNAL file header.

 fid = fopen ('ifile','rb');
 fseek(fid,1024,'bof');
 A = fread (fid,inf,'int16');

3. SIGNAL-header integer files are stored in the native coding of the A/D converter (unlike
headerless integer files - see below). 12-bit SIGNAL A/D boards produce data with an offset
of 2048 and a gain of 2048 bits/10 Volts, while 16-bit SIGNAL A/D boards deliver an offset
of 0 and a gain of 32768 bits/10 Volts. See "Import / Export of Binary Files" in the SIGNAL
User Guide. These conversion factors are used to convert the file data to Volts after
importing into MATLAB:

 A = (A - 2048.) / 204.8; 12-bit A/D
 A = A / 3276.8; 16-bit A/D

Exchanging Data Files between SIGNAL and MATLAB

Application Note 11 3

4. Example: read and plot the sample sound file C:\SIGNAL\TWEET.1. To convert and
display this file correctly, you must know its conversion format (12-bit A/D) and sample rate
(25000 Hz).

 fid = fopen ('c:\signal\tweet.1','rb');
 fseek(fid,1024,'bof');
 A = fread (fid,inf,'int16');
 A = (A - 2048.) / 204.8; % apply conversion factor
 X = [0:(length(A)-1)] * (1/25000); % use sample rate to derive time base for plot
 plot(X,A);

Headerless integer files

Headerless integer files are read in MATLAB by applying a data conversion factor.

1. Write the SIGNAL time buffer to a headerless integer time file. The following will write
time buffer 1 to headerless file IFILE in default 16-bit integer (/D) format. Default format has
an offset of 0 and a gain of 32768 bits/10 Volts, regardless of native A/D converter.

 >W T 1 /B /D
 Filename: IFILE

2. Read the file into a MATLAB array. The following MATLAB commands will read the
entire integer file IFILE into the array A and apply a conversion factor.

 fid = fopen ('ifile','rb');
 A = fread (fid,inf,'int16');
 A = A / 3276.8;

Exporting floating point SIGNAL time and frequency files to
MATLAB

SIGNAL time buffers which have been manipulated after acquisition, as well as all power
spectra and spectrograms, should be transferred as floating point data, to maintain precision.
Floating point files are written in actual Volts, not bits, so no offset or gain conversion is
necessary. This section covers time and power spectrum files, which are stored as one-
dimensional arrays. Spectrograms are stored as two-dimensional arrays and are discussed in a
separate section below.

SIGNAL-header floating point files

1. Write the SIGNAL time buffer to a SIGNAL floating point time file:

 >W T 1
 Filename: RFILE

2. Read the file into a MATLAB array. The following MATLAB commands will read the
entire floating point file RFILE into array A, using FSEEK to skip the SIGNAL file header.

SIGNAL/RTS APPLICATION NOTES

4 Application Note 11

 fid = fopen ('rfile','rb');
 fseek(fid,1024,'bof');
 A = fread (fid,inf,'float32');

3. Example: calculate the power spectrum of TWEET.1 in SIGNAL and store it as a
SIGNAL-header floating point file, then read and plot this file in MATLAB. To display this
file correctly, you must know its FFT length (8192 points) and sample rate (25000 Hz).

 >R T 1 In SIGNAL
 Filename: C:\SIGNAL\TWEET.1
 >XF T 1 1
 >W F 1
 Filename: TWEET.F

 fid = fopen ('tweet.f','rb'); In MATLAB
 fseek(fid,1024,'bof');
 A = fread (fid,inf,'float32');
 X = [0:(length(A)-1)] * (25000/8192);
 plot(X,A);

Headerless floating point files

1. Write the SIGNAL T or F buffer to a headerless floating point file. The following will
write time buffer 1 to the headerless file RFILE in floating point (/F) format.

 >W T 1 /B /F
 Filename: RFILE

2. Read the file into a MATLAB array. The following MATLAB commands will read the
entire floating point file RFILE into the array A.

 fid = fopen ('rfile','rb');
 A = fread (fid,inf,'float32');

Exchanging Data Files between SIGNAL and MATLAB

Application Note 11 5

Exporting MATLAB floating point time and frequency files to
SIGNAL

MATLAB values are stored in floating point format, so all MATLAB data is exported as
headerless files in 32-bit floating point format. When reading these files, SIGNAL will query
the user to establish the time base of the data, since there is no file header to convey this:

 Buffer type Query parameters
 T, F Sample rate
 FT Sample rate, time range, no. time bins

1. The following will write the entire one-dimensional array A to the headerless floating

point file RFILE:

 fid = fopen ('rfile','wb');
 fwrite (fid,A,'float32');

2. Read the file into a SIGNAL buffer. The following will read the floating point (/F) file
RFILE into T buffer 1, assigning a sample rate of 25000 Hz:

 >R T 1 /B /F
 Sample rate: 25000
 Filename: RFILE

Exchanging spectrogram files between SIGNAL and MATLAB

Spectrogram exchange requires special attention because spectrograms are two-dimensional
objects and can be stored in multiple ways. The target program must know two things in
order to correctly unpack a spectrogram file: 1) whether the data is stored by rows or by
columns and 2) the actual dimensions of the spectrogram rows and columns.

Row-Column Order

MATLAB and SIGNAL write spectrogram files in the same order – ascending frequency at
the earliest time value, then ascending frequency at the next time value, and so on. Thus the
following spectrogram, consisting of 3 rows and 4 columns,

 Freq | 9 10 11 12
 | 5 6 7 8
1 2 3 4
 Time

will be written by both programs in the following order in the file RFILE

SIGNAL/RTS APPLICATION NOTES

6 Application Note 11

 1 5 9 2 6 10 3 7 11 4 8 12

Note that when displaying this matrix numerically, MATLAB will display the first row at the
top of the screen, as shown below. However, when displaying the same matrix as a
spectrogram, the first row (lowest frequency) will appear at the bottom of the graph. It
should not be necessary to rearrange the stored matrix; this is a difference in display
conventions.

 1 2 3 4
 5 6 7 8
 9 10 11 12

Row-Column Dimensions

When importing into MATLAB, matrix dimensions are included in the FREAD command.
When importing into SIGNAL, matrix dimensions are supplied to the read command via user
queries. See the examples below.

Transferring Spectrogram Files from SIGNAL to MATLAB

Example: calculate the spectrogram of TWEET.1 in SIGNAL and store it as a SIGNAL-
header floating point file, then read this spectrogram into MATLAB. To unpack this file
correctly into a MATLAB array, you must know the number of FFT’s and the number of
points stored per FFT, and to display it you must also know its sample rate. These quantities
are displayed by the SIGNAL BD command as NTIM, NFRQ, and SRATE, respectively. See
the SPECTRO.M demo below to display the spectrogram matrix in MATLAB.

 >R T 1 In SIGNAL
 Filename: C:\SIGNAL\TWEET.1
 >SET XFTLEN 256
 >SET XFTSTP 100
 >XFT T 1 1
 >W FT 1
 Filename: TWEET.FT

 fid = fopen ('tweet.ft','rb'); In MATLAB
 fseek(fid,1024,'bof');
 A = fread (fid,[104,100],'float32'); % no. pts/FFT, no. FFT’s

Transferring Spectrogram Files from MATLAB to SIGNAL

Example: store a spectrogram file from MATLAB, then read it into SIGNAL. To read the
file into SIGNAL, you must know the number of FFT’s, time duration, and sample rate.

1. In MATLAB, write the matrix array A to the headerless floating point file RFILE:

 fid = fopen ('rfile','wb');
 fwrite (fid,A,'float32');

Exchanging Data Files between SIGNAL and MATLAB

Application Note 11 7

2. In SIGNAL, read the floating point (/F) file RFILE into FT buffer 1. The command queries
establish the FT buffer dimensions and time base.

 >R FT 1 /B /F
 Sample rate: 25000
 Time range (msec): 250
 No. time steps: 100
 Filename: RFILE

Exporting RTS files into MATLAB

The RTS writes and reads only time files. It can write either SIGNAL-header or headerless
files, but can read only SIGNAL-header files. Therefore the RTS can export time signals to
MATLAB as SIGNAL-header time files but cannot import them from MATLAB.

MATLAB Demo Files

SIGNAL provides two MATLAB M-files in \demos which demonstrate some of the above
techniques. TFILE.M demonstrates file import and export commands, and SPECTRO.M
displays two- and three-dimensional spectrograms in MATLAB, based on a spectrogram file
imported from SIGNAL. These demos use three sound files provided in the \sysdata
directory: tweet.1, tweet.f, and tweet.ft. SPECTRO could be the basis for a general
spectrogram display routine. Note: these files were tested with MATLAB version 5.2.

MATLAB Sound Processing Functions

MATLAB version 5.2 offers several sound processing functions, notably the ability to read
and write Wave files (WAVREAD and WAVWRITE) and to play sampled sound data
through the PC speaker (SOUND and SOUNDSC). These functions have the following
limitations.

1. WAVREAD and WAVWRITE handle data only between -1 and +1, truncating any sample
values outside this range. Because SIGNAL's acquisition range is ±10 Volts, these functions
are not recommended for data exchange with SIGNAL.

2. Like all software that plays through the PC's built-in "sound card" hardware, SOUND and
SOUNDSC are restricted to the available hardware sample rates, namely 44100 Hz, 22050
Hz, etc. To accommodate source signals of any sample rate, these functions automatically
resample the playback signal mathematically to the nearest available hardware rate. This will
usually introduce significant distortion, and so these functions are recommended only for
signals with PC-compatible native sample rates.

SIGNAL/RTS APPLICATION NOTES

8 Application Note 11

Issues in Data Storage and Exchange

This section provides background on data storage issues that affect data exchange between
software systems and hardware platforms. A basic understanding of these issues is important
to exchange data accurately and reliably.

Text vs. Binary format

Data files can be stored and exchanged in either text (ASCII) or binary format. Text format
is the most universal in that virtually all hardware platforms and software systems can read it,
however it imposes two limitations: 1) it requires considerably more storage (up to 10 times
more) for the same data and 2) numerical precision is limited to the data format chosen at the
time of writing (for example, F12.4 format limits precision to 4 decimal places). By contrast,
binary format is more space-efficient and numerical precision is determined by the data
storage format inside the computer, which is then maintained in the data file. For these
reasons, precision transfers of numerical data should usually be performed via binary files.

Integer vs. Floating Point format

Binary data in turn can be stored in either integer or floating point (real) format. Integer
format stores the (integer) data in direct binary form, e.g., 1001 for the number 9. It has
complete accuracy but a limited numerical range - e.g., a 16-bit integer can only represent
integers between -32768 and +32767. Floating point format refers to the coding of real
numbers, i.e., numbers which can assume non-integer values such as 1.234567. In this
format, a certain number of bits (the "mantissa") represent the numerical value without regard
for decimal point (e.g. 1234567 in the above), while the remaining bits (the "exponent")
indicate the position of the decimal point (i.e. 10 ** -6 in the above example). The number of
mantissa bits limits the precision of the format, while the number of exponent bits limits its
dynamic range (largest positive and negative number). IBM PC's use a standard 32-bit
floating point representation (IEEE 754) which has 1 sign bit, a 24-bit mantissa (1 bit is
implicit), and an 8-bit exponent. This provides a mantissa resolution of 2 ** 24 = 10 ** 7, or
7 decimal places, and an exponent range of 2 ** 8 = 128 (i.e., the binary "decimal point" can
be moved up to 128 binary places in either direction). Converting to powers of ten, the
dynamic range is then 2 ** ±128 = 10 ** ±37.

The two numerical formats serve quite different purposes. Raw acquisition data is normally
maintained in the original integer format delivered by the digitizer, to avoid introducing even
minor "noise" by converting the integers to the less precise floating point format. Conversely,
the results of calculations are almost universally stored in floating point format, since their
precision and range vary widely.

Exchanging Data Files between SIGNAL and MATLAB

Application Note 11 9

Data Precision

Another issue in data storage is different precision levels within each numerical format,
determined by the number of bytes allocated to store each number in the computer.
Obviously, more bytes allow for greater precision and numerical range. Many analysis
systems (including SIGNAL) use data lengths of 2 bytes (16 bits) for integer and 4 bytes (32
bits) for floating point, as described above. However, most computers also provide "double
precision" data types consisting of 4-byte integers and 8-byte floats. These are the default
representations of MATALB, although they are rarely necessary with signals having a
dynamic range of less than 100 db, which includes virtually all acoustic signals. The
following table summarizes the precision and numerical range of these data formats.

 Data Type Precision Range
 2-byte integer ±32768
 4-byte integer ±2,147,483,648
 4-byte float 7 decimal places 10 ** ±37
 8-byte float 14 decimal places 10 ** ±74

Data Byte Format

A final issue in data storage is the order in which the bytes representing a number are stored
in different computer models. This section applies only to users who are running MATLAB
on a non-PC platform, such as Sun or Macintosh, and can be ignored by those who are
running MATLAB on a PC, i.e., the same hardware platform as SIGNAL.

Different computers store the bytes making up an integer or floating point number in
different order in memory. Little-endian format stores the least significant byte first, i.e., at
the lowest memory location, while big-endian format stores the most significant byte first.
Thus the decimal number 1000 = 03e8 hexadecimal would be stored in 16-bit little-endian
format as

8 e 3 0
low address high address

and in big-endian format as

0 3 e 8
low address high address

SIGNAL/RTS APPLICATION NOTES

10 Application Note 11

These formats are used by the following hardware platforms:

 Little-endian Big-endian
 IBM PC Macintosh
 VAX NexT
 DEC Alpha Sun
 IBM RS6000
 SGi Iris

To transfer data into or out of MATLAB to a hardware platform using a different byte-order,
use the optional FORMAT parameter in the FOPEN statement to specify the byte-order order
of the incoming or outgoing data. MATLAB will then perform byte conversion as necessary.
For example, to import data from SIGNAL on the PC to MATLAB on a non-PC platform,
open the data file in MATLAB using the following (the field stands for IEEE format, little-
endian, the byte format of PC data). MATLAB will then convert the data from this format to
the format of its native machine.

 fid = fopen ('myfile','rb','ieee-le')

Similarly, to export data from MATLAB on a non-PC platform to SIGNAL on a PC, have
MATLAB store the data in little-endian IEEE format (ready for use by SIGNAL on the PC)
by including the following:

 fid = fopen ('myfile','wb','ieee-le')

4-4-99
Rev 1-15-04

	SIGNAL Application Notes
	 Table of Contents
	Application Note 5 SIGNAL Sound File Format Applies to: SIGNAL & RTS
	Introduction
	Overview of SIGNAL File Types
	Sound File Structure
	Terminology
	Header Section
	Data Section

	Header Format
	File Attributes
	Buffer Attributes
	Temporary
	Buffer-Type Specific
	Buffer Caption
	User-Defined Numerical Fields
	Reserved for System
	User-Defined Label Fields
	User-Defined Axis Labels
	Reserved for System

	Format Differences between SIGNAL and RTS
	Exchanging Sound Files with External Systems
	Programming Access to SIGNAL Files

	Application Note 6 Base Address, IRQ, and DMA Channel Usage Applies to: SIGNAL & RTS
	Overview
	Base Address, IRQ, and DMA Assignments

	Application Note 8 Analog I/O Board Diagnostics Applies to: SIGNAL & RTS
	Introduction

	Application Note 10 Digital Transfer between SIGNAL and DAT Recorders Applies to: SIGNAL & RTS
	Introduction
	Required Hardware and Software
	DAT Recorders
	S/PDIF Interface Boards
	Transfer Software
	Sound Card
	Sample Rate Converter

	Operating Instructions
	Transferring from DAT to SIGNAL
	 Using the DAT File in SIGNAL
	Using the DAT File in the RTS
	 Transferring from SIGNAL to DAT

	Performance Specifications
	DAT Recorders
	S/PDIF Board

	Application Note 11 Exchanging Data Files between SIGNAL and MATLAB Applies to: SIGNAL & RTS
	Introduction
	 Transferring Data between SIGNAL and MATLAB
	Exporting integer SIGNAL time files to MATLAB
	Exporting floating point SIGNAL time and frequency files to MATLAB
	 Exporting MATLAB floating point time and frequency files to SIGNAL
	Exchanging spectrogram files between SIGNAL and MATLAB
	Exporting RTS files into MATLAB

	MATLAB Demo Files
	MATLAB Sound Processing Functions
	Issues in Data Storage and Exchange
	Text vs. Binary format
	Integer vs. Floating Point format
	Data Precision
	Data Byte Format

